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Discovering hidden signals

from gravitational waves and our universe

Grant David Meadors

Los Alamos National Laboratory: XCP-8/T-5/A-1




Observing beyond light
Definition
Gravitational-wave observatory: a transducer,

from oscillations in the metric of space
to observables (electromagnetic, acoustic, .. .)

LIGO Hanford Observatory: GW150914
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The first (of O(35) so far) gravitational-wave observations — what next? .,



Acknowledgment of country

Overlooking X-arm, LIGO Hanford (credit: C. Gray)

1%t, acknowledgment of country practice learned from Australia:

e We acknowledge the Tewa pueblo of Otowi as traditional
owners of this land and pay our respects to their elders,

past, present, and future.
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Intro to the Gravitational-Wave Cosmos

The Gravitational Wave Spectrum

Quantum fluctuations in early universe

Binary Supermassive Black
Holes in galactic nuclei

w
8 Compact Binaries in our
S Galaxy & beyond
(o]
72 Compact objects
captured by Rotating NS,
Supermassive Black Supernovae
Holes —
iod 8¢ of
wave perio years hours sec ms

universe

log(frequency) -16 -14 -12 10 -8 -6 -4 2 0  +2

—
Cosmic microwave Pulsar Timing Space Terrestrial
background Interferometers  interferometers
polarization

Detectors

Analogy to electromagnetism (credit: NASA Goddard Space Flight Center)



Interferometry in Gravitational-wave Observatories

A Hanford, WA

Livingston, LA =

Mirror < Mirror

Signal
Recycling

Photodetector

Advanced LIGO: Hanford & Livington (credit: S. Larson, Northwestern U)
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Intro to Gravitational Waves in General Relativity
Wave equation from Einstein: perturbation h,, to metric g,

0 0 0 0
50t =8 T | = | o R (o))
0 0 0 0

Phase (rad)
Polarization 0 n/2 n 3n/2 2n
(axes)

Ly @
Ly ®
Ly (c)
L, @
L, (@

L, O

6 theoretical polarizations: conservation allows only (a) & (b) [+ & x] /37



Premonitions of Gravitational Waves
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PSR 1913+16 (seen in radio): neutron star orbital decay from GW emission

@ 1993 Nobel Prize in Physics: Hulse & Taylor for binary pulsar;
@ 2017 Nobel Prize in Physics: Weiss, Barish, & Thorne — LIGO
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Interferometry in Gravitational-wave Observatories

Infer h(t): measure phase ¢ between times-of-flight T, , (laser w),

p=w(Ty, - Tx) = w/zc ha (8, x(1)) + h+(t’y(t))dt.

0 2

Ind test
mass Y
(ETMY)

(ITMY)
Input test End test
mass X mass X
Pre-stabilized (ITMX) (ETMX)
laser (PSL)

]
1064 nm

20W . pitter
. Recycling
Nd:YAG iror (BS)
(RM)

1
- Pick-off beam

Interferometer readout

Initial LIGO (1997/2010): Michelson interferometer w/ Fabry-Perot arms g3,



Quantum optics v Heisenberg: LIGO squeezing experiments

2010/2011 vacuum phase squeezer ~ 2x laser power (credit: L. Barsotti) ¢,3;



Feedforward filtering: github.com/grantmeadors/AMPS

MICH\ PRC \

AR A
-TFI- ‘fit ) { TF p fit | 1

s ﬂ’ ‘s_,' ~*—' Suw

h(® D-h) D

corrected

-Un;aw-ectéd MICH-corrected

Filters ga g [data assimilation pipeline] (Meadors+ CQG 31, 2014)
read MICH, PRC noise n, write clean signal h(t) — Hann-window:

h(t) = h(t)—% (gA [1+cos 1324 } + g8 [ s&}) xn(t)
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github.com/grantmeadors/AMPS

Gain in sensitivity

DARM before and after MICH feedforward

—— DARM before filtering
—— DARM after filtering

Sensitivity [magnitude//Hz]

23 ;

Frequency [Hz]

Hanford noise subtraction (lower is better: blue before, green after)
Observation gain: +29% range —> 2x volume, 2010-04-13
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Perspective on the spectrum

1 0712
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Strain sensitivity of GW observatories (credit: C. Moore, R. Cole, C. Berry)
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Transition — after first detection

Built on 50 years of theoretical & experimental labor, on
2015 September 14 at 09:50:45 UTC. ..
the era of gravitational-wave astronomy began

13 /37



The first kind of gravitational wave: binary black holes

{ e sge@

u

(‘Observation of gravitational waves from a binary black-hole merger’,
LVC, Phys Rev Lett 116 (2016) 061102)

14 /37



Finding GW150914 in the sky

Origin of GW150914 w/ sun and moon at time of event
(credit: R. Williams, Caltech; T. Boch, CDS Strasbourg;
S. Larson, Northwestern U) 15/37



Only One of Four Kinds of Gravitational Waves

Transient Persistent

Modeled
Continuous +

Unmodeled

Burst Stochastic
Credits: AEI, Penn State (C. Reed), NASA, LIGO (B. Berger) 16/37



What next?

—Continuous waves (CWs) are harder, yet offer. ..
—insight into neutron star structure,

—probe into GW polarization, unknown sources, ‘new physics’

Neutron stars — isolated or stable binaries — emit CWs
GW freq f = 2x spin freq v:
non-axisymmetric rotation — 4-pole I, ellipticity e:

472G [, f2
= €
ctoor
Persistent signal hg: O(1072° — 1072%), analysis hard & innovative

ho
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Continuous waves are next

... Strain hy ~ 1072° not impossible: integrate over timel

Signal model: sine wave w/ rest-frame frequency fo, initial time To:
h(t) = hgsin (27cfo [t — To))

[ID Gaussian noise: log likelihood scales w/ power (hy squared):

log £ o h}

In the source’s rest frame, CWs would be easiest problem?!. ..

lesp. if frequency known — but cannot assume it is + our detector moves
18/37



Continuous waves: known and unknown
.only looking at exactly right place (still no detection)

hy Strain Sensitivity

10~

10-%

10726

10727

Y
1
1
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J0636+5129
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J1623-2631 L v
v
vV v v'vvl
v vy
v v wyg v
v Yy " v
V v % - v . v _‘u"'!!r A4
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*i:'ﬁl J0711-6830 * :* Fo Ky
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*
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Sensitivity estimate
% Results
C below spin-down limit
spin-down limits

* %*
*i

102 ll)3
Gravitational-wave Frequency (Hz)

LIGO 01-02 known pulsar search upper limits (ApJ 879:1, 2019)

Blandford's Argument: unknown (~ 108) >> known (221) pulsars
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Continuous waves: a high computational-cost challenge

Looking for the unknown
— ...3 big challenges:
@ Frequency fy unknown, in general?
(amplitude & phase can be marginalized)

@ Detectors are on rotating Earth, revolving around Sun,
& source might be binary
(+ data has artifacts)

© Computers are finite

2except for pulsars

20/37



Problem 1: Unknown Frequency

[llustration
Missed cycle @ 1 kHz/107 s: 1 part in 1010 = complete signal loss

- data ® @ data
matched template === matched template
=== mismatched

mismatched
SO Ry

Amplitude [-]
Amplitude Spectral Density [H'/*]

0.0 05 1.0 15 2.0 25 3.0
Time [s] Frequency [Hz]

Signal, matched, mismatched (1.1x fy) templates: time & Fourier domains

O(fo - Tons) templates® — 1D: coffee whilst FFTs on GPU? No.
3precise Fisher metric scaling in Jaranowski, Krolak, & Schutz, PRD 1998
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Problem 2: Amplitude (easy) & Phase (hard) Modulation

Phase modulation Bessel sidebands (simplified illustration)

— unmodulated data
== phase-modulated data

— unmodulated data
160 =« phase-modulated data

Amplitude [-]

s
S

N
S

0 2 4 6 8 10 0.0 0.2 0.4 0.6 0.8
Time [s] Frequency [Hz]

PM: Roemer/Doppler effect from orbit, time & Fourier domains

— hard challenge:
¢(t) demodulation depends on 2 sky location parameters
(binary stars: + 4 more for orbit) — 3-7D search # easy
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Problem 3: A computational-cost challenge

= fine grid: low SNR big space = bad MCMC convergence
Cost C ~ Memplate
high computational cost (even @ us/template)*

Memplate ~ 109 - 1015 +
(cf. coalescences < 10° templates)

Dilemma: long T.on needed to find low hg

“a year-long coherent all-sky search would need ~ 10?? templates
23/37



Recapitulation — foundation

Coherence time Ty duration of Fourier Transform (FFT)
assumed T, = whole observation time T:
in N dimensions,

Cost (CPU-hours) Sensitivity (min. detectable)

C x (TobS)N ho o (Tobs)_1/2

Semi-coherent approach: Typs = Q@Teon Where Q € Z,
break up observation into shorter segments — integrate — stack:

Cost (CPU-hours) Sensitivity (min. detectable)
C x (Tcoh)N_l 7_obs hO X (Tcoh Tobs)il/4

Sensitivity easier: T.on 'knob’ decouples from resolution

Dilemma solved
— new challenge: 1 Topn for available resources C

24/37



In search of gravitational-wave stars

25 /37



Scorpius X-1: a gravitational-wave source in torque-balance?

Example

Scorpius X-1 (Giacconi 1962),
Brightest persistent extrasolar X-ray source

Gravitational-wave frequency fo = 2 spin frequency v:

b s 1027 (600 Hz 1/2 Fy 1/2
o = fo 1078 erg cm=2 51

o\ 1/2
- 3.5x1026<600 Z> . Sco X-1

fo
Distance 9000 light-years (2.8 kpc)
Eccentricity <3x1073
Sky location a=16h19m55.1s, §=-15d38m24.9s
X-ray luminosity 2.3 x1031W, 60000 Ls,,

26 /37



Mock Data Challenge (MDC): pipelines near torque-balance

Five methods compared (simulated at aLIGO design sensitivity)
(Messenger et al: PRD 92 (2015) 023006)

CrossCorr— s
TwoSpect
Radiometer |
Sideband  —
Polynomial s

0 2 4 6 8 10 12 14 16
hg x 102

detection probability

Scorpius X-1 Mock Data Challenge: detection efficiency vs strain ho 5,3,



TwoSpect algorithm for CW binary searches

lllustration: 2nd FFT over spectrogram

f
AAF l

fo 21/(4T,0)

-
v

»
»

1/(2T)

<

mod. depth range
(e.g., 2n f[1.44%0.54 light-s]/P)

Yy

A

fl
frequency search range

0 1/P 2/P 3/P .g., 40 to 2040 Hz)
R-statistic (weighted sum of 2"¢ Fourier-plane pixels)
Mt wilZ - A
ZM 1[W1]2

w: template weight, i: index in M-pixel template,
Z: spectral power after barycentering & antenna pattern,
A: background noise power (y2-distributed)
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Sco X-1 TwoSpect Simulations
Simulation + Real Data

1.0

o
o

o
=)

N
IS

Detection efficiency

<
¥

* % Detection bins

0.0 — sigmoid fit

I

10'22

Inject 2000 simulations/1-Hz band = 2 million total: calculate upper limits
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Sco X-1 Results from TwoSpect: Initial LIGO Science Run 6

[y [
10'22 [
102
s
®
B
)
=
Eoom|
o
(5]
(=}
=X
=)
2 95% C.L.
10 N - - =1 " " HI1L1 min, avg pol |1
— torque balance
A A no upper limit set
10'26

500 1000 1500 2000
Frequency [Hz]

Sco X-1 search: 2 x 1072 upper limit®

®Methods: GDM, Goetz, Riles, Class Quant Grav 33 (2016) 105017

Search: GDM et al, Phys Rev D 95, 042005 (2017) 3037



CrossCorr

CrossCorr cross-correlates two data streams, e.g., observatories

o Fourier data zf.x) oc Frr (x(t))
correlated in paired ‘SFTs' k, I/ € P,
within pair lag-time Ti,g,

Teoh = Tiong = Tshort + 2 Thag,
fi: instantaneous frequency d®,/dt,

@ Resample: uniform detector t — uniform source time t&

Output: p statistic

_ kZfi;k 17 d126;1 brze k™ bizey
po= % Z <[ ei®k } ei® ""[ ei®k } ei®
k,leP
tB = interpolated [t — (At)solar — (At)binary]
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CrossCorr: resampling goals — longer lag/coherence time

[llustration
Resampling speed-up:
make bars taller

o FFT trick:

— can FFT f; templates
O( Tlig) — O(Tiag log Tiag)

) : Tlong

o SFT trick:

= fewer pairs/bins (pad/interp)

Thag R Tiag
TsFr Tshort

IFO, SFT time

(

IFO, SFT time
( """ ) : Tshort

N 1 .1
sensitivity oc (Tiag Tobs)4 o< (computing)is
32/37



CrossCorr: threshold of detection

10—23
g |
- -24 J:
o
510 1
2 iy
S i
= !
g ;
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7 1k
5 3
= X
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©
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B
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2
S 10% H
2 :
@ 7
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& ¥
previous best [3] upper limit vy,
+ + forecast: 1x cost, Ix band, 3 day limit %
0 O (inner orbital parameter space of above forecast) o,
~ - median 1x cost, 1x band, 3 day forecast e,
X forecast: 10x cost, 10x band, 10 day limit
— median 10x cost, 10 band, 10 day forecast
“++ median 10x cost, 10x band, 10 day, 2x detector
+11 SeoX-1 torque-balance
1026
: g
101 10 10

Frequency [Hz]

Projected sensitivity: Advanced LIGO analysis®

5Meadors+ PRD 97, 044017 (2018) 33/37



Unifying directions

Many approaches to efficiently approximate model:

1+ cos?. cos d(t)
2 COSL] ' { sin &(t)

but most (beside Prix+ 2009) based on ad hoc simplifications: —
should go from the root,

data d, signal h, parameters 6, posterior p
likelihood A, prior 7, normalization Z, & hypothesis H:

h(t) = ho | Fy

d(t|6,H) = h(t|6,H)+ n(t),
AO|H)(d|6, H)
Z(d|H)

— p(f]d, H)

@ in practice, almost same as accelerating A calculations

e refocus on key issue: max(p(detection)/p(nondetection))
given resources
34 /37



Unifying directions: hypothesis testing

probability(detection)

for continuous waves (CWs) is the biggest unknown.
(for binary black holes and neutron stars, very close to 1)

All the parameters — hg, fy, ...— are great for science:
but tiny SNR makes huge nuisance dimensions

— figure out the fastest approach,
discover the first gravitational-wave star,
win the next Nobel

35/37



Summary

LIGO, Virgo, KAGRA, LISA, & allies in the future

o Gravitational-wave astronomy has made its first discoveries
@ New categories of sources exist in the GW sky

e Combining algorithmic cleverness & statistical insight
is key to these mysteries. . .
and will open up extreme matter and gravity in neutron stars
and the early universe

Acknowledgments
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From instrumentalist to analyst

Starting as a hands-on experimenter,

drawn into several increasingly-hard analyses:

@ Squeezing
@ Feedforward

© Continuous waves’

Keystone: (Approximate) Bayesianism

7 As-yet undiscovered signals — this talk’s focus

38/37



Continuous waves are next

[Hlustration
Rest-frame sine wave — amplitude = hg, phase = 27fy[t — To]:

-+ data ® @ data
== matched template matched template
g .40
z
I $ 30
o a
3 g
B F
H @ 20
v
3
2
E
£
< 10
o,
P ) 0800000
0.0 05 10 15 2.0 25 3.0
Time [s] Frequency [Hz]

Simulated signal — data & template — time & frequency (Fourier) domains
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Continuous waves: scaling with data duration
[llustration
hg strain of CWs < coalescences ox 10726 vs 10721

Coherent signal-to-noise-ratio (SNR) of a persistent signal

Require® SNR Z 8: in signal processing, possible w/ enough data

@-® full data
e e 1/2 data
40 =a 1/4 data

Amplitude Spectral Density [Hz'?]

Frequency [Hz]

Fourier domain amplitude (1/v/N norm) o SNR scaling w/ duration

8SNR 8 <« 50; signal linear in time, noise as square root (random walk) 40/37



Continuous waves: how much data to integrate

Analytically, how much to see O(1072°)?

Noise power spectral density (PSD) S, ~ (4 x 10-2*Hz~%/?)2,
Observing time Typs ~ 1 year

ho ][ Tops]™? |4 x 10724H271/2
1026 | | 1yr si/2 ’

Tobs
Sh

SNR = hg z14[

Analogy — CWs visible in To,s, if coalescence is in Teoa (1 ms):

10721 -
Tobs ~ ﬁ Tcoal ~ 10's.

— observing time T, possible, but. ..

41/37



Problem 2: Amplitude (easy) & Phase (hard) Modulation

Amplitude modulation as Earth rotates (illustration)

Z-axis

X-axis

AM: ‘Antenna’ response, hy pol., 0 Hz (credit: M. Rakhmanov)

— tractable:
can optimize for max-£ (Jaranowski+ 1998)/Bayes (Prix+ 2009)

42/37



Problem 21/2: real data has features

S6 Hi1 86 L1 i
OtHl — O1L1 —

-
S,
)
N
|

%LMDLWJ Iy .|M |

Strain noise (Hz'”e)

W), AN ]

100 1000
Frequency (Hz)

Science Run 6/Observing Run 1 noise floor & line artifacts (credit: LIGO)

43 /37



Problem 3: computational cost

Wait!

Coalescences have artifacts and more dimensions, O(15):

Can CWs not do same, maybe w/ Markov Chain Monte Carlo
(MCMC)?

No. Here's why. ..

44 /37



Problem 3: A computational-cost challenge
Search metric g,3 (Brady, Creighton, Cutler, & Schutz 1998):

a (quasi-)Fisher metric calculating N(templates):

o offsets A\ from true parameters \,
@ parameter space derivatives, da ),
e of statistic mismatch, m(\, A\)

1
8ap = EaA/\aaA,\ﬁ m(A, A)\),

every dimension ‘sharper’ o longer T.op,

If mismatch m < pimax, then Miemplate needed® (Leaci+ 2015):

Memplate X Mr;glx/2/ detg()\)dN/\,

—N/2+N
X Mma)(/ 7_coh

%a.k.a. samples, parameter space points, likelihood evaluations
45/37



Neutron stars in binary systems

Binaries: more parameters/more reasons to look

e Long gravitational-wave lifetime (recycling)

Ellipticity & hot spots due to accretion
@ Reason for neutron star ‘speed limit'? (Chakrabarty 2003)

@ Torque-balance: LMXB accretion-induced continuous GW
(Papaloizou & Pringle 1978, Wagoner 1984, Bildsten 1998)
high X-ray flux Fx, = GW strain hg at unknown frequency fy
Accretion’s angular momentum = torque = GWs,

fo ~ constant1®

05¢cretion fluctuation = spin-wandering of fo,

perhaps limits Sco X-1 T to 3-10 days (beyond, Viterbi tracking possible)
46 /37



Signal model
Search frequency f,, binary orbital params | Sco X-1 («, §):

asini

@ projected semi-major axis ap =

@ orbital period P,

o time of ascension T,
Observed strain h(t) depends on phase ®(t), SSB time 7, &. ..

amplitude factors: antenna funcs? F, F; neutron star inclination ¢

B 1+ cos?. cos d(t)
h(t) - hO |:F+2>F>< COS[/:| . |: sin Cb(t) 5

d)(t) = O+ 27h [T(t) + (At)binary} )

. (27
(At)binary = apsin <P(t - Tasc)>-

?For polarization 1, F. = acos2iy + bsin2vy, Fx = —asin 21 + bcos 2y
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Gravitational wave searches for Sco X-1 and LMXBs

Roemer delay Period Doppler shift

(asini) [light-s] (P) [s] | [dimensionless]

Solar system 499 | 315 x 10° 0.99 x 10~*
Sco X-1 system ~ 1.44 | 0.68 x 10° 1.33 x 107*

(Shifts cannot be ignored)

Computational limits

New algorithms needed:

even on cluster or Einstein®@home,

1-year Typs fully-coherent search needs years/decades/centuries. . .
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Mock Data Challenge (MDC): pipelines near torque-balance
(derived from Messenger+ 2015 simulation)

Detections in 1st Sco X-1 MDC

3x10°%
e :
107240 ® k@ g,,,*,w_g! ,,,,,,,,, -
* | - BN
| A A
% 3x10°BL. A g .V“‘. ———————————— :
s A o .'o P
2 —25 A A ‘o @@
- 10 B 0. .@% .. .
< ‘ °
3 x 10—26 @ cc,ts,rm,sb,pn v cc,rm
* cc,ts,rm,sh A cc,ts
] cc,ts,rm @ cc :
10—26 T T i i
50 100 200 500 1000 2000

Frequency (Hz)

Detections by pipeline & (torque-balance):
flat noise spectrum, 5,}/2 — 4 x 10724 Hz /2
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TwoSpect algorithm for CW binary searches
Simulation

2nd Fourier transform: binary spectrogram (Goetz & Riles 2011)

Power in t-f plane Power in f-f plane
Number of bins in data arrays (n t, n f): (1110, 197) Number of bins in data arrays (n f-prime, n f): (556, 159)

3 150 169 s 1e17
= 105 =

s S 64
v 090 v 56
5 075 5 48
E] ]

< 100 0.60 z ;g
£ 0.45 £ a
3 030 3 16
g 015 H 0.8
£ 0.00 £ 00

o

(] 200 400 600
Time: SFT number (n)

800 1000 100 200 300 400 500

2nd Frequency: f-prime (Hz)

FFT over spectrogram time [fixed f]: (¢, f) (LEFT) — (f’,f) (RIGHT)

Doppler shift:
__2W@ap

Af,
obs p
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Sco X-1 TwoSpect Statistics
Real Data

log,,( counts +1)

2 4 6 8 10
Estimated single-template log,(—log,op-value +1)

Histogram (naive p-value of) R-statistic &

review detection threshold (follow-up if seen in 2 observatories) 51/37



Search for a better way

TwoSpect

still far from torque-balance

+ has an intrinsic limit:

Teon constrained by Dopper shift

CrossCorr

is the better way

52/37



CrossCorr: what is resampling?
A frame shift (illustration). ..

14 14
10 10
£ 0 g0
& &
as 05
o
02 02
8o 5 o0 o G20 8oo 3 o0 o5 B
Freauency (Hz) 0991 Freauency (H2) 10091
14
12
10
<os
o5
04
02
8o 5 o By

020
Frequency (Hz) +9.9%1

ASDs: source frame (left), binary modulation (right), resampled (bottom)
uniform detector time t — uniform source time t2

tB = interpolated [t — (At)solar — (At)binary] )
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Resampling injections: parameter space p heatmaps
ho = 10723, \/S, = 4 x 10724 Hz7Y/2, T,ps =3 x 10° s,
Tiag = 90000 s, Tspt = 1800 s (simulation)

Features in p
e X-correlations (3D cone)
@ Q@ long Tj,5, AM sidebands
Future idea

@ ‘residual’ sidebands: ap, Tisc, P
steps to nearby parameter space
with Jacobi-Anger identity
(Bessel filter convolution)

Resampling enables long coherence
54 /37



CrossCorr

CrossCorr existed — it needed speedup: Resampling

Measured time [s]

10*

10?

10°
10° 10! 10* 10*

Predicted time [s]

CrossCorr resampling timing model
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CrossCorr

10%

@ e 1440 SFTs
4 4 10805 SFTs
= 720 SFTs

© 540 SFTs
o o 3605 SFTs

Ratio (demodulation/resampling) of run times

107!

Gain in sensitivity (square root of statistic ratio)

10?

10°

10*

Coherent integration maximum lag-time [s]

w
°

I
12

~
>y

3]

°

o o predicted
- actual

®

’ %?mfﬁﬁi_ah 1

(LEFT): runtime speedup (RIGHT): sensitivity gain

(with respect to non-resampled CrossCorr)

400 500
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Unifying directions: inspiration from precession

@ beyond marginalization/smooth A manifold (Dergachev 2013)
@ 100 milion pulsars in Milky Way: detectable as population?
~ black hole background (Smith & Thrane 2018)
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Comparison to selection effects with black-hole precession (in prep)
population hyper-parameters differ for detected (blue) & (orange)

Detected CWs may have 6 different from background population 57 /37



	Gravitational wave observatories
	Auxiliary length control noise
	MICH & PRC filtering for h(t)
	Gain in sensitivity

	Familiar territory
	CrossCorr
	Summary
	Appendix
	Experimental career


